If it's not what You are looking for type in the equation solver your own equation and let us solve it.
20p^2=14-18p
We move all terms to the left:
20p^2-(14-18p)=0
We add all the numbers together, and all the variables
20p^2-(-18p+14)=0
We get rid of parentheses
20p^2+18p-14=0
a = 20; b = 18; c = -14;
Δ = b2-4ac
Δ = 182-4·20·(-14)
Δ = 1444
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1444}=38$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(18)-38}{2*20}=\frac{-56}{40} =-1+2/5 $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(18)+38}{2*20}=\frac{20}{40} =1/2 $
| 14n-2n-11n+3n=12 | | (1/3)t^2-25=0 | | 3y-33=7(y-7) | | 6x^2+12x-90=1 | | .5^x=16 | | m2+6m-27=0 | | 5z-z-z=18 | | 6-8x-4=-31+3x-11 | | -5x-3=7-3× | | 4v-4v+4v+2v-20=16 | | 3-6x=1-5x | | 2=g/4-5 | | -1/5a+21=23 | | -11x+9x-8=-2(8-x) | | 7n^2=-28+35n | | b^2-b=21+3b | | (9x+25)=x | | 6(-14)+6y=42 | | 11c-7c+3c=14 | | 5(x^2+4)=5+6x^2 | | 6n-5(n-3)=14 | | 12v=18+3v | | X3-2y+9=0 | | 31/2/x=51/4/18 | | 8-x3;x=2 | | 2u+2u-2u-2u+3u=15 | | 19-13p=-17-5p | | 3(1-g)=9-5g | | 48a+29a^2=0 | | X×(-3)=x+2 | | 4(x-5)-7x=-2 | | X-30=50-5x |